FUROSTANOL GLYCOSIDES FROM TRIGONELLA FOENUM-GRAECUM SEEDS

RAJESH K. GUPTA, DHARAM C. JAIN and RAGHUNATH S. THAKUR

Central Institute of Medicinal and Aromatic Plants, Lucknow 226016, India

(Revised received 11 March 1985)

Key Word Index—Trigonella foenum-graecum; Leguminosae; fenugreek; furostanol glycosides, trigofoenosides A and D.

Abstract—Two new furostanol glycosides trigofoenosides A and D have been isolated from the *Trigonella foenum-graecum* seeds as their methyl ethers, A-1 and D-1. Their structures have been determined as (25S)-22-O-methyl-furost-5-ene-3 β ,26-diol, 3-O- α -L-rhamnopyranosyl $(1 \rightarrow 2)$ - β -D-glucopyranoside; 26-O- β -D-glucopyranosyl $(1 \rightarrow 3)$ - β -D-glucopyranoside; 26-O- β -D-glucopyranoside (D-1).

INTRODUCTION

In continuation of our studies [1] on the seeds of *Trigonella foenum-graecum* saponins, we have further isolated two more new furostanol saponins and their structures have been elucidated.

RESULTS AND DISCUSSION

A methanolic extract of seeds was fractionated with n-butanol which yielded a crude mixture of saponins. Further separation was effected using droplet counter current and column chromatography leading to the isolation of pure methyl ethers of two saponins, designated as A-1 and D-1. The formation of methyl ethers in the case of furostanol saponins has been reported earlier [1] and for convenience these have been employed in our studies to elucidate their structures. The furostanol nature of these saponins was established through characteristic

colour reactions [2], enzymatic hydrolysis and spectral data [3].

Inspection of the Fast Atom Bombardment (FAB) mass spectrum of trigofoenoside A revealed that the molecular weight of A is 902 which was clear from the peaks at m/z1036 $[M+H+Cs]^+$, 925 $[M+Na]^+$ and 941 $[M+K]^+$. A prominent peak at m/z 885 $[M+H-H_2O]^+$ was observed due to loss of water involving the hydroxy function at C-22, which also suggested the furostanol structure of this saponin [4]. The peaks at m/z 723 [(M $+H-H_2O)-162$ ⁺ and 739 $[(M+H-H_2O)-146]$ ⁺ resulted from the loss of glucose and rhamnose, respectively. The peak at $707 [(M + H - H_2O) - 178]^+$ was assigned to the loss of one glucose with an adjacent oxygen atom indicating the outer position for one glucose unit. Two signals corresponding to m/z 577 and 561 represented the cleavage of a glucorhamnosyl (308) unit at C-3 with and without an oxygen atom. Similarly the peak at m/z 545 $[(M+H-H_2O)-340]^+$ was assigned to the

loss of one rhamnose (146+16) and one glucose (162+16) units along with their glycosidic oxygen atoms which indicated that a glucose unit was linked to the genin molecule at C-26 which was the only alternative position available for glycosidation. The peaks at m/z 415 and 397 were ascribable to the [aglycone+H]⁺ and [(aglycone+H)-H₂O]⁺.

Thus the sugar sequence in A could be proposed as rhamnose → glucose → yamogenin; 26-O-glucose. Acid hydrolysis of A-1 and D-1 gave the same sapogenin, yamogenin. The sugar components were D-glucose and L-rhamnose for both in the molar ratio of 2:1 for A-1 and 3:1 for D-1.

Methylation studies, periodate oxidation and partial hydrolysis suggested the sugar sequence L-rhamnopyranosyl (1 \rightarrow 2)-D-glucopyranose for A-1 (also supported by FAB-MS results) and L-rhamnopyranosyl (1 \rightarrow 2) [D-glucopyranosyl (1 \rightarrow 3)]-D-glucopyranose for D-1 at the C-3 position of aglycone, whereas the presence of one D-glucose at the C-26 position was confirmed by enzymatic hydrolysis for both compounds.

The anomeric configuration of D-glucose and L-rhamnose was established as β and α respectively which was revealed by the application of Klyne's rule [6] and ¹H NMR spectral data. In addition enzymatic hydrolysis with a β -hydrolysing enzyme suggested the β -configuration for the C-26 glucose. Accordingly, the structure of A-1 was elucidated as (25S)-22-O-methylfurost-5-ene-3 β ,26-diol, 3-O- α -L-rhamnopyranosyl(1 \rightarrow 2)- β -D-glucopyranoside; 26-O- β -D-glucopyranosyl (1 \rightarrow 3)]- β -D-glucopyranoside; 26-O- β -D-glucopyranoside for D-1.

EXPERIMENTAL

Mps are uncorr. TMS was used as an internal standard in CD₃OD-CDCl₃ and DMSO-d₆ for ¹H NMR (400 MHz and FT-80A). Column chromatography was on silica gel 60-120 mesh (BDH). Whatman No. 1 paper was used for PC. The following solvents were employed, solvent a, CHCl3-MeOH-H2O (65:40:12); solvent b, CHCl₃-MeOH-H₂O (65:35:10); solvent c, BuOH-pyridine- H_2O (6:4:3); solvent d, C_6H_6 - Me_2CO (3:1); solvent e, C₆H₆-Me₂CO (85:15); solvent f, BuOH-EtOH-H₂O (5:1:4); solvent g, $CH_2Cl_2-Me_2CO$ (49:1); solvent h, EtOAc-C₆H₆ (15:85). Spraying reagents, 10% H₂SO₄, Ehrlich's reagent and Liebermann-Burchard reagent. Sugars and methylated derivatives were located on PC (descending) by aniline hydrogen phthalate and ammoniacal AgNO₃ soln. GLC of sugars, dual FID; column 6', 3 % OV-17 chromosorb-W, N2 as a carrier gas, conditions for temperature programming: (a) initial hold at an initial temp. of 125° for 4 min and then at the rate of 10°/min to a final temp. of 265°; (b) same column with initial hold at an initial temp. 150° for 2 min and then at a rate of 10°/min to a final temp. of 275°. DCCC was performed using the DCC-A apparatus of Tokyo Rikakikai, Tokyo (Japan). 300 tubes were used. The solvent system used was CHCl3-MeOH-H2O (7:13:8), upper layer (water layer) as stationary phase, in descending mode. FAB-MS, JMS-D × 300 mass spectrometer.

Isolation. Fraction I of the n-BuOH extract [1] was chromatographed on a silica gel column with CHCl₃-MeOH-H₂O (65:15-35:10). Five major furostanol glycosides, trigofoenosides A-1 to E-1 were isolated in the order of increasing polarity. Trigofoenosides A-1 and D-1 thus obtained were purified by DCCC. Samples were dissolved in 10 ml mixture (1:1) of both upper and lower phases and then chromatographed in a 10 ml

sample column. The flow rate was 7-10 ml/hr. The eluents were collected in 5 ml fractions, monitored by TLC, with solvent system b.

Trigofoenoside A-1. An amorphous solid from MeOH-Me₂CO, R_f 0.84 (solvent system a), mp 210-213° (decomp.); IR ν KBr cm⁻¹; 3600-3200 (OH), 1150-1000 (C-O-C), no spiroketal band; ¹H NMR (DMSO-d₆): δ1.76 (br s, Me-rha), δ3.24 (3H, s, C-22 OMe), 4.25 (d, 1H, J = 7.1 Hz), 4.57 (d, 1H, J = 7.0 Hz), 5.20 (1H, br s); [α]_D -84.18° (pyridine; c 1); [M]_D -771.1° (-778°). (Found: C, 59.98 H, 8.39, C₄₆H₇₆O₁₈ requires: C, 60.20; H, 8.29%)

Trigofoenoside A. Amorphous powder, R_f 0.77 (system a), mp 219–221° (decomp.), $[\alpha]_D$ – 90.1° (pyridine, c 1). FAB-MS m/z: 1036 $[M+H+CS]^+$, 925 $[M+Na]^+$, 941 $[M+K]^+$; M, 902 for $C_{45}H_{74}O_{18}$.

Trigofoenoside D-1. An amorphous solid from MeOH-Me₂CO, R_f 0.67 (solvent system a), mp 250-253°; IR ν KBr cm⁻¹: 3600-3250 (OH), no spiroketal; ¹H NMR (CD₃OD-CDCl₃): δ 1.67 (br s, Me-rha), 3.12 (s, C-22 OMe), 4.21 (d, 1H, J = 7.3 Hz), 4.56 (d, 1H, J = 7.5 Hz), 4.92 (d, 1H, J = 7.8 Hz), 5.10 (1H, br s); $[\alpha]_D - 77.6^\circ$ (pyridine; c 1); $[M]_D - 836.52^\circ$ (-844°). (Found: C, 58.0, H; 7.82, C₅₂H₈₆O₂₃, requires C: 57.88, H: 7.97.)

Trigofoenoside D. Amorphous powder, R_f 0.55 (system a), mp 246–248° (decomp); $[\alpha]_D$ – 73.2° (pyridine; c 1).

Enzymatic hydrolysis. Compounds A-1 and D-1 (100 mg) were dissolved in H_2O (5 ml) and emulsin (almond, 10 ml) soln and one drop of toluene were added to each soln. Mixtures were incubated at 37° for 96 hr before being extracted with n-BuOH and checked by TLC. Water layers were coned and subjected to PC (system c) and TLC (system b). The n-BuOH concentrate from A-1 gave a single Liebermann-Burchard reagent positive spot and recrystallized from MeOH- H_2O as an amorphous powder (PA) mp 198-201° (decomp.); $[\alpha]_D - 94.7$ ° (pyridine; c 1); R_f 0.87 (system a); IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3600-3200 (OH), 985, 920, 900, 850 [920 > 900 (255), spiroketal]. PA on silica gel TLC (system a) gave a superimposable spot with Pro A of dioscin and on complete hydrolysis furnished D-glucose, L-rhamnose (1:1) and yamogenin.

The n-BuOH concentrate of D-1 was crystallized from MeOH. It gave a single Liebermann-Burchard reagent positive spot, R_f 0.70 (system a), mp 301-304° (decomp.); $[\alpha]_D = 86.2^\circ$ (pyridine; c 1); IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3600-3200 (OH), 985, 920, 900, 850 [920 > 900 (25S), spiroketal]; PD on TLC exhibited a superimposable spot with gracillin and on complete hydrolysis furnished D-glucose, L-rhamnose (2:1) and yamogenin.

Identification of aglycone and sugars. Compounds A-1 (80 mg) and D-1 (100 mg) in 2 N HCl ($\rm H_2O$ -dioxan, 1:1) were refluxed separately for 4 hr. The ppts were collected and purified by crystallization from Me₂CO-MeOH to afford colourless needles R_f 0.31 (system h), mp 201°; MS m/z: 414 [M]⁺, 139 (base peak) for $\rm C_{27}H_{42}O_3$; [α]_D -129° (CHCl₃; c 1); IR $v_{\rm max}^{\rm KBr}$ cm⁻¹: 3600-3200 (OH), 1460, 1380, 980, 921, 898, 861 [921 > 898 (25S), spiroketal]. Co-TLC (system g) on AgNO₃-impregnated plate (2%), three-fold development, gave superimposable spot with yamogenin.

Each filtrate was neutralized with resin (Dowex-3, OH⁻ form) and evaporated to dryness in vacuo. Each residue was examined by PC (system c), TLC (system b) and GLC (condition a). Sugars were identified as glucose (R_G 1.00, R_f 0.08) and rhamnose (R_G 2.00, R_f 0.30) in both. GLC of sugar samples as trimethyl silyl derivatives R_t (min): glucose (26.9, 28.9), rhamnose (18.4, 19.7).

The molar ratio of sugars was determined by the help of GLC and calorimetry [7] (phenol-H₂SO₄), which revealed the proportions of glucose and rhamnose to be 2:1 and 3:1 for A-1 and D-1, respectively.

Methylation of A-1 and D-1. A-1 (75 mg) and D-1 (100 mg) were methylated by Hakomori's method [5] and worked up as usual. The permethylates were obtained as brown residues. Methanolysis with 3% methanolic HCl gave methyl 2,3,4,6-tetra-O-methyl-p-glucopyranoside ($R_{\rm TMG}$ 1.00, R_f 0.61) methyl 2,3,4-tri-O-methyl-1-rhamnopyranoside ($R_{\rm TMG}$ 1.01, R_f 0.67) and methyl 3,4,6-tri-O-methyl-p-glucopyranoside ($R_{\rm TMG}$ 0.78, R_f 0.55) for A-1 and methyl 2,3,4,6-tetra-O-methyl-p-glucopyranoside, methyl 2,3,4-tri-O-methyl-1-rhamnopyranoside and methyl 4,6-di-O-methyl-p-glucopyranoside ($R_{\rm TMG}$ 0.46, R_f 0.38) for D-1, identified by PC after hydrolysis (system f), TLC (system d) and GLC (condition b) with the help of authentic samples.

Periodate treatment. Compounds A-1 and D-1 (30 mg each) were taken in H₂O (5 ml each) and treated with 0.05 M sodium-m-periodate soln (3 ml) in aq. MeOH. The reaction mixtures were kept in the dark for 48 hr at room temp before being extracted with n-BuOH. The extracts were coned and completely hydrolysed. On usual work up both saponins furnished yamogenin (co-TLC and mmp) and sugar residues which were subjected to PC (system c). No sugar was detected in compound A-1, but D-1 showed the presence of p-glucose.

Partial hydrolytic studies of PA. PA (30 mg) was subjected to partial hydrolysis with 0.1 N HCl in dioxan– H_2O (1:1) for 40 min. It gave a prosapogenin PA₁ (12 mg) and an aglycone after purification by PLC (system b). PA₁ (7 mg), R_f 0.89 (system a), mp 271–273° (decomp.); IR v_{max}^{KBr} cm⁻¹: 3600–3250 (OH), 981, 918, 900 and 861 (918 > 900); $[\alpha]_D$ – 101.6° (pyridine; c 0.5); co-TLC (system b) with trillin exhibited a superimposable spot with PA₁ and on complete hydrolysis PA₁ gave D-glucose and yamogenin as an aglycone, identified with the help of authentic samples.

Partial hydrolytic studies of PD. PD (32 mg) on partial hydrolysis with 0.1 N HCl in dioxan-H₂O (1:1) for 40 min yielded three prosapogenins namely PD₁, PD₂ and PD₃ in the order of increasing polarity. PD₁ and PD₂ were found to be

identical to PA₁ and PA as on TLC (system b) both produced similar spots. These were confirmed by mmp, co-IR and complete hydrolysis of each. PD₃, R_f 0.72 (system b), mp 269–272° (decomp.); $[\alpha]_D$ –88.3°. On complete hydrolysis D-glucose was the only sugar detected on PC (system c) along with yamogenin in the molar ratio of 2:1.

C-22 hydroxy and C-22 methoxy derivatives. Compounds A-1 and D-1 (30 mg each) were boiled with Me₂CO-H₂O (7:3) for 21 hr and kept overnight. After evaporation of the solvent (in vacuo) an amorphous powder was obtained from each compound. The ¹H NMR spectra of both saponins exhibited no methoxy signal. When these products (A and D) were refluxed with dry MeOH for 11 hr, A-1 and D-1 regenerated.

Acknowledgements—The authors thank Dr. Akhtar Husain, Director, CIMAP, for his keen interest and providing necessary facilities for this work, and to Dr. Y. Itagaki, Jeol Ltd., (Japan) for FAB-MS. One of the authors (RKG) thanks CSIR for the award of a research fellowship.

REFERENCES

- Gupta, R. K., Jain, D. C. and Thakur, R. S. (1984) Phytochemistry 23, 2605.
- Kiyosawa, S. and Hutoh, M. (1968) Chem. Pharm. Bull. 16, 1162.
- Rothman, E. S., Wall, M. E. and Eddy, C. R. (1952) J. Am. Chem. Soc. 74, 4013.
- Schulten, H.-R., Singh, S. B. and Thakur, R. S. (1984) Z. Naturforsch 39C, 201.
- 5. Hakomori, S. (1964) J. Biochem. 55, 205.
- 6. Klyne, W. (1950) Biochem, J. 47, 12.
- Dubois, M., Gillis, K., Hamilton, J. K., Rabbers, P. A. and Smith, F. (1956) Analyt. Chem. 28, 350.